Home » Showroom » » Products » Diesel Injector Nozzle » High Quality Car Steering Auto Steering Assembly For Ford Focus

High Quality Car Steering Auto Steering Assembly For Ford Focus

High Quality Car Steering Auto Steering Assembly For Ford Focus

Application:  High quality Car Steering ...

Market Type:  After Market

Packing:  We Use 2 Layers Packing--First Layer Plastic Packaged Moistureproof, Waterproof;Second Layer Carton PackageResist Compression Make Sure The Goods Safe

Samples:  Charge

Sample Price (USD):  190

Maximum Prodcution Capacity:  20000pcs/Month

Delivery Time:  2 Working Days

Place of origin:  China

Export Ratio:  81% - 90%

Unit Price:  USD 190

Price Terms:  FOB

Delivery Port:  Shenzhen

Minimum Order:  1Set/Sets

Product Attribute:



Standard or Nonstandard:Standard

Type:steering assembly

OE NO.:For Ford Focus

Brand Name:shumatt

Packing:one steering assembly /box


High quality Car Steering auto steering assembly For Ford Focus.

Production Description:

hot sell ca steering auto steerinf assembly

Focus Steering is the term applied to the collection of components, linkages, etc. which will allow a vessel ( ship , boat ) or vehicle ( car , motorcycle , bicycle ) to follow the desired course. Other arrangements are sometimes found on different types of vehicles, for example, a tiller or rearwheel steering. Tracked vehicles such as bulldozers and tanks usually employ differential steering that is, the tracks are made to move at different speeds or even in opposite directions, using clutches and brakes , to bring about a change of course or direction.

Parameter of Focus steering assembly

AO 005 089 Package Sizem³ 126x35x24
Part No. FQ091003 Steering Turns: 2.5
Origin China(Mainland) Applicable models: Volkswagen CC
Basic geometry

The basic aim of steering is to ensure that the wheels are pointing in the desired directions. This is typically achieved by a series of linkages, rods, pivots and gears. One of the fundamental concepts is that of caster angle - each wheel is steered with a pivot point ahead of the wheel; this makes the steering tend to be self-centering towards the direction of travel.
The steering linkages connecting the steering box and the wheels usually conforms to a variation of Ackermann steering geometry, to account for the fact that in a turn, the inner wheel is actually travelling a path of smaller radius than the outer wheel, so that the degree of toe suitable for driving in a straight path is not suitable for turns. The angle the wheels make with the vertical plane also influences steering dynamics (see camber angle) as do the tires.
Direction of machine types
Power steering

Power steering helps the driver of a vehicle to steer by directing some of the its power to assist in swivelling the steered roadwheels about their steering axes. As vehicles have become heavier and switched to front wheel drive, particularly using negative offset geometry, along with increases in tyre width and diameter, the effort needed to turn the wheels about their steering axis has increased, often to the point where major physical exertion would be needed were it not for power assistance. To alleviate this auto makers have developed power steering systems: or more correctly power-assisted steeringon road going vehicles there has to be a mechanical linkage as a fail safe. There are two types of power steering systems; hydraulic and electric/electronic. A hydraulic-electric hybrid system is also possible.
Speed Sensitive Steering
An outgrowth of power steering is speed sensitive steering, where the steering is heavily assisted at low speed and lightly assisted at high speed. The auto makers perceive that motorists might need to make large steering inputs while manoeuvering for parking, but not while traveling at high speed. The first vehicle with this feature was the Citroën SM with its Diravi layout[citation needed], although rather than altering the amount of assistance as in modern power steering systems, it altered the pressure on a centring cam which made the steering wheel try to "spring" back to the straight-ahead position.
Four-wheel steering
Four-wheel steering (or all-wheel steering) is a system employed by some vehicles to improve steering response, increase vehicle stability while maneuvering at high speed, or to decrease turning radius at low speed.
Active four-wheel steering
In an active four-wheel steering system, all four wheels turn at the same time when the driver steers. In most active four-wheel steering systems, the rear wheels are steered by a computer and actuators. The rear wheels generally cannot turn as far as the front wheels. There can be controls to switch off the rear steer and options to steer only the rear wheel independent of the front wheels. At low speed (e.g. parking) the rear wheels turn opposite of the front wheels, reducing the turning radius by up to twenty-five percent, sometimes critical for large trucks or tractors and vehicles with trailers, while at higher speeds both front and rear wheels turn alike (electronically controlled), so that the vehicle may change position with less yaw, enhancing straight-line stability.
Crab steering
Crab steering is a special type of active four-wheel steering. It operates by steering all wheels in the same direction and at the same angle. Crab steering is used when the vehicle needs to proceed in a straight line but under an angle (i.e. when moving loads with a reach truck, or during filming with a camera dolly), or when the rear wheels may not follow the front wheel tracks (i.e. to reduce soil compaction when using rolling farm equipment)
Passive rear wheel steering
Many modern vehicles have passive rear steering. On many vehicles, when cornering, the rear wheels tend to steer slightly to the outside of a turn, which can reduce stability. The passive steering system uses the lateral forces generated in a turn (through suspension geometry) and the bushings to correct this tendency and steer the wheels slightly to the inside of the corner.
Articulated steering
Articulated steering is a system by which a four-wheel drive vehicle is split into front and rear halves which are connected by a vertical hinge. The front and rear halves are connected with one or more hydraulic cylinders that change the angle between the halves, including the front and rear axles and wheels, thus steering the vehicle.
Rear wheel steering
Rear wheel steering tends to be unstable because in turns the steering geometry changes hence decreasing the turn radius (oversteer), rather than increase it (understeer). A rear wheel steered automobile exhibits non-minimum phase behavior.[8] It turns in the direction opposite of how it is initially steered. A rapid steering input will cause two accelerations, first in the direction that the wheel is steered, and then in the opposite direction: a "reverse response." This makes it harder to steer a rear wheel steered vehicle at high speed than a front wheel steered vehicle.
For safety reasons all modern cars feature a collapsible steering column (energy absorbing steering column) which will collapse in the event of a heavy frontal impact to avoid excessive injuries to the driver. Airbags are also generally fitted as standard. Non-collapsible steering columns fitted to older vehicles very often impaled drivers in frontal crashes, particularly when the steering box or rack was mounted in front of the front axle line, at the front of the crumple zone. This was particularly a problem on vehicles that had a rigid separate chassis frame, with no crumple zone. Most modern vehicle steering boxes/racks are mounted behind the front axle on the front bulkhead, at the rear of the front crumple zone.

Send your message to this supplier

Enter between 20 to 3,000 characters, English only.